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Abstract

The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk
through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of
anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The
anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several
dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural
dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and
Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone,
epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D3, are discussed for their direct or indirect effect on these self-renewal pathways.
Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells
and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells.
This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Cancer is the second leading cause of death in the United States.
The first use of chemotherapeutic agents to treat cancer was in the
early 20th century, which became the basis of discovery and
development of most current anticancer drugs [1,2]. Although a
large majority of chemotherapeutic drugs can considerably shrink
tumor sizes [3], they often fail to eradicate tumors. The cancer may
eventually develop drug resistance and recurrence [3–7]. In recent
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years, a great deal of research has demonstrated the existence of
cancer stem cells (CSCs) or tumor-initiating cells (TICs) in several
human cancers [8–14]. However, most currently available therapeutic
approaches, including chemotherapy and radiotherapy, lack the
ability to effectively kill these CSCs [3,15–17]. Therefore, this CSC
population has become a target for cancer prevention and therapy [7].

Since a large number of epidemiological studies have demonstrat-
ed an association between consumption of fruits and vegetables and
the reduced risk of various cancers, naturally occurring dietary
compounds have received increasing attention for their efficacy in
cancer chemoprevention [18]. The anticancer effects of many dietary
components have been reported for both in vitro and in vivo studies
[19–26]. This review aims to summarize the potential impact of
natural dietary compounds on CSC self-renewal based on CSC theory
and self-renewal signaling pathways.

2. Cancer stem cells

The CSC theory asserts that many types of cancer are initiated from
and maintained by a minor population of tumorigenic cells that
are capable of continuous self-renewal and differentiation [15,27]
(Fig. 1A). This cell population undergoes unlimited proliferation
and gives rise to differentiated cells, developing new tumors
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Fig. 1. Cancer stem cell theory. (A) CSCs are capable of self-renewal and differentiation. (B) Isolated CSCs are able to phenotypically recapitulate the parental tumor along serial
passaging through multiple recipient mice.
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phenotypically recapitulating the original tumors [7] (Fig. 1B). In
addition, recent studies indicate that CSCs may be responsible for
tumor relapse and resistance to therapy [28,29].

Evidence supporting the CSC model was initially obtained from
acute myeloid leukemia [30,31]. Dick et al. isolated a cell subpopu-
lation with surface marker CD34+CD38−, which was able to reca-
pitulate the phenotypes of the original patient neoplasms along serial
passaging through multiple NOD/SCID recipient mice [8,30,32].
Subsequent studies support that solid tumors, including breast
[9,33], pancreatic [12,34], brain [10,35], colon [11,36,37], liver [14],
head/neck [38], ovarian [39,40] andmelanoma [13,41], are also driven
and sustained by CSCs [31]. The first work in isolation and
characterization of CSCs in solid tumors was conducted by Al-Hajj
et al. [9]. A breast cancer cell population expressing the surface
marker, CD44+CD24−/lowLin−, was able to initiate tumors with the
same heterogeneity as the primary tumor from 100 cells [9]. Simi-
larly, enzymatic activity of aldehyde dehydrogenase 1 (ALDH) was
also demonstrated to be a selective marker to enrich for breast
cancer stem/progenitor cells [33]. These two phenotypes, ALDH-
positive and CD44+CD24−/lowLin−, were identified as possessing a
small overlap that has the highest tumorigenic capacity, generating
tumors from as few as 20 cells [33]. Recently, the CD44+CD24+ESA+

and CD133+ subpopulations were found to harbor putative pan-
creatic CSCs [12,34], and an overlap was suggested to exist between
these two populations [34]. These cell markers have been widely
used to evaluate the ability of drugs to target cancer stem/proge-
nitor cells [42–44].

Another technique that has been developed to isolate and
characterize cancer stem/progenitor cells is tumorsphere culture
[45–48]. This is based on the ability of stem/progenitor cells to grow
in serum-free, nonadherent suspension as spherical clusters, while
differentiated cells fail to survive under the same condition [45,46].
Cancer stem/progenitor cells are capable of yielding secondary
spheres and differentiating along multiple lineages [45]. Decreases
in tumorsphere formation in primary culture in the presence of
drug treatment and in subsequent passages that are cultured in the
absence of drugs indicate an inhibitory effect of the drug on self-
renewal capacity of cancer stem/progenitor cells [42,45].

CSCs are able to generate the diverse cells that comprise the tumor
through continuous self-renewal and differentiation [49]. There is a
reliable in vivo model often used to evaluate the drug efficacy against
CSCs [9,49,50]. Immune-deficient mice are first implanted with
human cancer cells or human primary tumors. After treatment, the
dissociated tumor cells are analyzed for CSC population based on their
specific cell markers, and the same number of living tumor cells from
control and treated mice are reimplanted to a second group of mice
that do not receive any treatment [15]. Tumorigenicity is then
monitored in the recipient mice. For example, the ability of breast
cancer cells from the primary NOD/SCID xenografts to regenerate
tumors upon reimplantation in the mammary fat pads of secondary
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mice reflects the inhibitory effect of the treatment on CSCs [15].
Failure of tumor initiation indicates the effectiveness of the treat-
ment against breast CSCs.

3. Self-renewal pathways of CSCs

CSCs produce the tumor mass through continuous self-renewal
and differentiation, which may be regulated by similar signaling
pathways occurring in normal stem cells [3,27]. Understanding the
mechanisms that underlie the self-renewal behavior of CSCs is of
greatest importance for discovery and development of anticancer
drugs targeting CSCs. So far, several major pathways including Wnt/
β-catenin, Hedgehog and Notch have been identified to play pivotal
roles in CSC self-renewal [51–53].

3.1. Wnt/β-catenin pathway

Wnt/β-catenin pathway was demonstrated to modulate cell
proliferation, migration, apoptosis, differentiation and stem cell self-
renewal [54–57]. It has been shown that Wnt/β-catenin signaling is
implicated in the maintenance of CSCs of leukemia [58–60],
melanoma [61], breast [62,63], colon [64], liver [65] and lung [66]
cancers. For example, overexpression of β-catenin in stem cell
survival pathway was shown to mediate the resistance of mouse
mammary stem/progenitor cells to radiation [63]. Yang et al. [65]
reported that Wnt/β-catenin signaling promoted expansion of the
hepatic progenitor cell population when it is overexpressed in
transplanted rat oval cells and when it is transiently expressed in
adult mice. Elimination of β-catenin abrogated the chemoresistant
cell population endowed with progenitor-like features [65].

β-Catenin, the essential mediator of canonical Wnt signaling,
participates in two distinct functions in the cell, depending on its
cellular localization. Membrane-localized β-catenin is sequestered
by the epithelial cell–cell adhesion protein E-cadherin to maintain
cell–cell adhesion [67]. On the other hand, cytoplasmic accumulation
of β-catenin and its subsequent nuclear translocation, followed by
cooperation with the transcription factors T cell factor/lymphoid
enhancer factor (TCF/LEF) as a transcription activator, eventually
leads to activation of Wnt target genes such as c-Jun, c-Myc, fibro-
nectin and cyclin D1 [27,68–73]. Binding of Wnt proteins, a family of
secreted proteins, to Frizzled receptors results in the cytoplasmic
accumulation of β-catenin [74]. In the absence of Wnt signaling,
β-catenin forms a multiprotein complex with glycogen synthase
kinase 3β (GSK3β), adenomatous polyposis coli, casein kinase1α
and axin [75]. When β-catenin is phosphorylated at Ser33/Ser37/
Thr41 by GSK3β, it is immediately subject to ubiquitin-proteasome
degradation [75,76].

The link between Wnt/β-catenin and PI3K/Akt pathway has been
established by several studies. Activated Akt (i.e., phospho-Akt
Ser473) was shown to be able to phosphorylate Ser9 on GSK3β,
which may decrease the activity of GSK3β, thereby stabilizing
β-catenin [77–79]. Furthermore, Korkaya et al. [15] demonstrated
that PI3K/Akt pathway is important in regulating themammary stem/
progenitor cells by promoting β-catenin downstream events through
phosphorylation of GSK3β.

3.2. Hedgehog pathway

Another major pathway that is involved in stem cell self-renewal
is hedgehog signaling pathway [46,51,80,81]. For instance, Liu et al.
[51] have demonstrated that the hedgehog pathway plays a crucial
role in regulating self-renewal of normal and malignant human
mammary stem cells by utilizing both in vitro and mouse model
systems. Another recent study revealed the essential role of
hedgehog-Gli signaling in controlling the self-renewal behavior of
human glioma CSCs and tumorigenicity [81].

In the absence of hedgehog ligands (Sonic Hedgehog, Desert
Hedgehog and Indian Hedgehog), their transmembrane receptor
Patched (Ptch) associates with Smoothened (Smo) and blocks Smo
function [27,80,82]. When secreted hedgehog ligands bind to Ptch,
Smo is released, triggering dissociation of transcription factors, Gli1,
Gli2 and Gli3 from Fused (Fu) and suppressor of Fused (SuFu), leading
to transcription of an array of genes, such as cyclin D, cyclin E,Myc and
elements of EGF pathway [27,80,82,83].

Sonic hedgehog pathway is also linked to transcription factor
NF-κB signaling. It was suggested that overexpression of sonic
hedgehog is activated by NF-κB in pancreatic cancer and pancreatic
cancer cell proliferation is accelerated by NF-κB in part through sonic
hedgehog overexpression [84]. Kasperczyk et al. [85] further
characterized sonic hedgehog as a novel NF-κB target gene and
mapped minimal NF-κB consensus site to position +139 of sonic
hedgehog promoter.

3.3. Notch pathway

Notch signaling is known to control cell proliferation and
apoptosis to modulate the development of many organs [86]. A
number of recent studies have demonstrated that Notch-activated
genes and pathways can drive tumor growth through the expansion
of CSCs [46,86–91]. Notch pathway is believed to be dysregulated in
CSCs, ultimately leading to uncontrolled CSC self-renewal [86]. For
example, Notch pathway was shown to play an important role in the
self-renewal function of malignant breast cancer CSCs [52, 92].

Four Notch proteins, Notch-1 to Notch-4, have been identified to
express as transmembrane receptors in a variety of stem/progenitor
cells [93]. Binding of surface-bound ligands (Jagged1, Jagged2, Delta-
like1, Delta-like3 and Delta-like4) triggers serial cleavage events at
the Notch proteins by ADAMprotease family and γ-secretase [93–95].
Subsequently, the intracellular domain of Notch is released and
translocates into the nucleus, where it acts as a transcription co-
activator of recombination signal sequence-binding protein Jκ (RBP-J)
to activate downstream target genes, for example, c-Myc, cyclin D1,
p21, NF-κB [95–101].

Notch1 has been reported to cross-talk with NF-κB pathway in
diverse cellular situations [101–108]. Specifically, Notch-1 is neces-
sary for expression of several NF-κB subunits [102,109] and
stimulates NF-κB promoter activity [102].

4. Targeting self-renewal pathways of CSCs by natural
dietary compounds

The existence of CSCs has profound implications for cancer
chemoprevention and therapy [3]. Since CSCs are more resistant to
conventional therapies in comparison with differentiated cells
constituting the tumor bulk, combination of drugs that are directed
against CSCs and conventional chemotherapy would have the
potential to overcome tumor resistance, reduce relapse [27] and
eventually improve patient survival. It was suggested that targeting
CSCs could be achieved by several strategies including sensitizing
them to chemotherapeutic agents, induction of differentiation and
inhibition of self-renewal signaling [7,110]. A plethora of naturally
occurring dietary compounds have been proven to be promising
chemoprevention agents against various types of cancer. A number of
studies have found that some dietary compounds can directly or
indirectly affect CSC self-renewal pathways [110]. Herein, we review
the current knowledge of some natural dietary compounds with a
focus upon their potential impact on CSC self-renewal pathways and
CSC survival (summarized in Table 1).



Table 1
Natural dietary compounds that potentially regulate CSC self-renewal and inhibit CSCs

Natural dietary compound Food origin CSC Elements of self-renewal pathways

Curcumin Turmeric Breast CSCs β-catenin, TCF-4, Frizzled-1; Notch-1
Sulforaphane Cruciferous vegetables Pancreatic CSCs, breast CSCs β-catenin, GSK3β (?), Wnt-9a
Soy isoflavone (especially genistein) Soy GSK3β, β-catenin, Wnt-5a, Sfrp-2; Notch-2
Epigallocatechin-3-gallate Green tea HBP1, β-catenin
Resveratrol Grapes, berries, plums, and peanuts β-catenin, GSK3β; Notch-1
Lycopene Tomatoes, watermelon, papaya, pink grapefruit β-catenin
Piperine Black and long pepper Breast CSCs Wnt/β-catenin
Vitamin D3 Fish, egg yolk, beef liver TCF-4, E-cadherin
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4.1. Curcumin

Curcumin is a well-known dietary polyphenol present in an Indian
spice, turmeric, which is usually used in preparation of mustard and
curry [111]. Curcumin possesses anti-inflammatory and antioxidant
activities [111,112], and has been studied as a chemoprevention agent
in several cancer models [24,113].

Jaiswal et al. [114] suggested that curcumin induced caspase-3-
mediated cleavage of β-catenin, leading to inactivation of Wnt/β-
catenin signaling in HCT116 intestinal cancer cells. The work of
Park et al. [111] strengthened the point that curcumin decreased
β-catenin/TCF transcription activity in all tested cancer cell lines,
including gastric, colon and intestinal cancer cells, which was
attributed to the reduced amount of nuclear β-catenin and TCF-4
proteins. Moreover, analysis of gene transcription profile revealed
that the expression of Wnt receptor Frizzled-1 was potently
suppressed by curcumin [115]. Curcumin was also shown to be
able to attenuate response of β-catenin to Wnt-3a in colon cancer
cells through down-regulation of p300, a positive regulator of Wnt/
β-catenin signaling [116]. In addition, Wang et al. [117] demon-
strated that curcumin down-regulated Notch-1 mRNA level in
pancreatic cancer cells, indicating a transcriptional inactivation of
Notch-1 by curcumin. Curcumin-induced inactivation of NF-κB DNA-
binding activity was potentially mediated by Notch-1 signaling
pathway [117].

Very recently, Kakarala et al. [118] demonstrated that curcumin
was able to target breast stem/progenitor cells, as evidenced by
suppressed mammosphere formation along serial passage and by a
decrease in the percent of ALDH-positive cells. On the contrary,
curcumin had little impact on differentiated cells [118]. By utilizing a
TCF-LEF reporter assay system in MCF7 cells, these authors confirmed
that the effect of curcumin on breast cancer stem/progenitor cells was
mediated through its potent inhibitory effect on Wnt/β-catenin
signaling [118].

4.2. Sulforaphane

An extensive amount of studies have substantiated the chemo-
prevention property of high consumption of cruciferous vegetables
(e.g., broccoli and broccoli sprouts), which has beenmostly attributed
to the activity of isothiocyanates that are enzymatically hydrolyzed
from glucosinolates contained in these vegetables [119,120]. In
particular, sulforaphane, which is converted from a major glucosino-
late in broccoli/broccoli sprouts [121], has been demonstrated to be
not only effective in preventing chemically induced cancers in animal
models [121–124], but also in inhibiting the growth of established
tumors [125,126].

In a very recent report, Kallifatidis et al. [127] suggested that
sulforaphane could abrogate the resistance of pancreatic TICs to TRAIL
(tumor necrosis factor-related apoptosis-inducing ligand) by inter-
fering with TRAIL-activated NF-κB signaling. Hence, they concluded
that combination of sulforaphane with TRAIL would be a promising
strategy for targeting pancreatic TICs [127]. The down-regulation of
NF-κB function by sulforaphane treatment has been reported in
prostate and colon cancer cells as well [128–130]. In addition,
expression of Wnt-9a was shown to be significantly suppressed in
ApcMin/+ mouse adenomas treated with sulforaphane [131].

Sulforaphane was previously shown to induce down-regulation of
β-catenin in human cervical carcinoma HeLa and hepatocarcinoma
HepG2 cells [132]. On the other hand, several studies have reported
the activity of sulforaphane to down-regulate Akt pathway in ovarian,
prostate and colorectal cancers [133–135]. Very recently, PI3K/Akt
pathway was demonstrated to play an important role in regulating
breast stem/progenitor cells by promoting β-catenin downstream
events through phosphorylation of GSK3β [15].

In our studies, we have shown that sulforaphane is effective in
targeting breast cancer stem/progenitor cells in vitro and in vivo
[42]. Sulforaphane inhibits breast CSCs at concentrations (0.5–5 μM)
approximately 10-fold lower of that exhibiting anti-proliferative
effect on cancer cell culture. Our studies have demonstrated that
sulforaphane can inhibit breast CSCs in vivo. The data showed that
recipient NOD/SCID mice inoculated with tumor cells derived
from sulforaphane-treated primary xenografts failed to develop
tumor regrowth up to 33 days, whereas control tumor cells quickly
gave rise to large tumors. We also observed a down-regulation of
Wnt/β-catenin self-renewal pathway in sulforaphane-treated breast
cancer cells.

4.3. Soy isoflavone

High consumption of soy-rich food has shown an inverse
correlation with the incidence of breast cancer [136]. Increased
plasma concentration of genistein (one of the most active soy
isoflavones) due to soy food intake was associated with reduced
risk of breast cancer in recent studies [137, 138]. Soy isoflavones,
especially genistein, exhibit potent antiproliferative effect on various
cancers [139].

Soy isoflavones were found to inhibit the phosphorylation of
Akt and FOXO3a, enhance the expression of GSK3β, leading to
increased phosphorylation of β-catenin in prostate cancer cells
[140, 141]. Genistein was reported to attenuate β-catenin-mediated
expression of Wnt downstream target genes in mammary epithelial
cells by up-regulating E-cadherin [142]. Using gene microarray
technique, a study revealed that dietary exposure to genistein
down-regulated Wnt signaling through inhibiting Wnt-5a expres-
sion and enhancing Sfrp-2 (secreted frizzled-related protein-2, an
extracellular Wnt receptor antagonist) expression and reduced
Notch-2 expression in rat mammary epithelial cells in vivo [143].
Moreover, Wang et al. [144, 145] have found that genistein
inhibited Notch-1 signaling, thereby down-regulating NF-κB acti-
vity, eventually leading to cell growth inhibition and apoptosis in
pancreatic cancer cells. The inactivation of NF-κB by genistein in
several cancers [146–148] provides a basis for further investigation
in the impact on hedgehog pathway. Based on all these data, future
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studies on the effect of soy isoflavone, particularly genistein, on
CSCs is warranted.

4.4. Epigallocatechin-3-gallate

Green tea is one of the most widely consumed beverages in the
world. Epidemiological studies suggest an association between green
tea consumption and cancer prevention effects [149]. The various
polyphenolic catechins contained in green tea are thought to largely
account for its chemoprevention activity against certain types of
cancer. In particular, several studies indicate that epigallocatechin-3-
gallate (EGCG), the most abundant catechin in green tea, is a potent
chemoprevention agent [150]. EGCG has been shown to inhibit NF-κB
activity, MAPK pathway, activator protein-1 (AP-1) activity, EGFR-
mediated downstream signaling pathways, and so on [151].

EGCG was demonstrated to block Wnt signaling by stabilizing
mRNA of HBP1, a suppressor of Wnt signaling, thereby reducing
breast cancer cell tumorigenic proliferation as well as invasiveness
[110,152]. The nuclear import of β-catenin was decreased in
adenomas isolated from EGCG-treated ApcMin/+ mice, a widely used
transgenic model recapitulating human colon cancer that bears an
adenomatous polyposis coli (APC) gene mutation [153, 154]. In
addition, several studies revealed that EGCG suppressed Akt activa-
tion in both colon cancer cell lines and in vivo mouse models
[151,153–155]. In our previous study, EGCG was shown to inhibit the
chaperoning function of heat shock protein 90 (Hsp90) by impairing
the interaction between Hsp90 with its co-chaperones in pancreatic
cancer cells, thereby down-regulating Hsp90 client proteins including
Akt [156]. Additionally, EGCG has been found to negatively regulate
NF-κB activity and inhibit the ATP- or IL-1β-induced activation of NF-
κB [141,157–160]. It is still unknown whether this could have impact
on sonic hedgehog expression and hedgehog signaling pathway.
Taken together, these studies support the further evaluation of EGCG
in CSCs.

4.5. Resveratrol

During the last decade, resveratrol, a polyphenol derived from a
wide variety of plants such as grapes, berries, plums and peanuts
[161], has been shown to possess chemopreventive and chemother-
apeutic potential against human cancers [162]. Resveratrol exhibited
inhibitory effect on the proliferation of various human cancer cells
and on the carcinogenesis in animal models [162, 163].

Low concentrations of resveratrol were shown to significantly
decrease the nuclear localization of β-catenin in colon cancer cells
[164]. The inhibitory effects of resveratrol on Waldenstrom's
macroglobulinemia cells were suggested to be mediated through
the down-regulation of Akt and Wnt signaling pathways [141,165].
Cecchinato et al. [166] reported that resveratrol inhibited the PI3K/
Akt pathway, thereby activating GSK3β in acute lymphoblastic
leukemia cells. Furthermore, these authors showed for the first time
that escalating doses of resveratrol led to a progressive decrease in
Notch-1 protein level, as well as the mRNA levels of its downstream
effectors [166]. Therefore, the potential impact of resveratrol against
CSCs may be warranted for future exploration.

4.6. Lycopene

Lycopene, one of the most extensively studied carotenoids in
tomatoes, possesses potent anti-oxidant activity due to its extended
conjugated hydrocarbon chain [167]. Lycopene has been shown to
induce apoptosis and inhibit cell cycle progression in various cancer
cells [168–174], and the efficacy of lycopene against xenograft tumors
was reported in a number of in vivo studies [172,175–177].
In colon cancer cells, lycopene suppressed Akt activation and
nonphosphorylated β-catenin protein level, and augmented the
phosphorylated form of β-catenin, which were associated with
reduced protein expression of cyclin D1 [178]. Hence, lycopene may
inhibit Wnt/β-catenin signaling via the connection along Akt/GSK3β/
β-catenin. Further studies on CSCs in response to lycopene would
perhaps be promising.
4.7. Piperine

Piperine, a dietary polyphenol isolated from black and long
peppers, has been reported to reduce cancer incidence in chemical
rodent models of lung cancer [118,179–183]. Although the chemo-
prevention effect of piperine in breast cancer as a single agent has not
been explored, Kakarala et al. [118] demonstrated that piperine was
able to target breast CSCs and inhibit Wnt/β-catenin signaling
pathway. In addition, piperine was shown to suppress the nuclear
import and activation of NF-κB [180, 184], the effect of which on sonic
hedgehog signaling is not yet clear.
4.8. Vitamin D3

Vitamin D3 has been shown to reduce the incidence of human
breast, prostate and colon cancers [185–187] and induce apoptosis
and cell cycle arrest of various cancer cells [188]. In 2001, Palmer et al.
[189] demonstrated that vitamin D3 promoted the differentiation of
colon carcinoma cells by the induction of E-cadherin expression and
the inhibition of β-catenin signaling. Ligand-activated vitamin D
receptor competed with TCF-4 for β-catenin binding, thereby
reducing levels of c-Myc, peroxisome proliferator-activated receptor,
TCF-1 and CD44 [189]. These findings would trigger further
investigations of vitamin D3 in terms of chemoprevention of CSCs.
5. Conclusions and future perspectives

Naturally occurring dietary compounds are advantageous in
several aspects as chemoprevention agents: (1) they are present in
commonly consumed food, which is readily available to most people
in daily life; (2) they usually have very low or no toxicity, in contrast
to most chemotherapy drugs; (3) many of these compounds have
shown potential as an adjunct to chemotherapy drugs in some clinical
trials. Although the reports were very limited for dietary compounds
to inhibit CSCs, many of them have been shown to be involved in
modulation of CSC self-renewal pathways. Up to date, three dietary
components, sulforaphane, curcumin and piperine, have been shown
to inhibit Wnt/β-catenin signaling and breast CSCs at relatively low
concentrations [42,43]. For instance, our previous work showed
that sulforaphane inhibited breast CSCs at concentrations of 0.5–5 μM
[42]. The inhibitory effect on the self-renewal pathway may
contribute to the preferential inhibition of CSCs. Further studies are
needed to investigate the underlying mechanisms. For other dietary
compounds of interest, it would be very promising to study their
efficacy and effective concentrations against CSCs. Given that these
diet-based compounds are usually multitargeted, they may mediate
other cellular events, for example, induction of CSC differentiation
and sensitization of CSCs to chemotherapeutic agents, in addition to
their potential impact on self-renewal signaling.

Investigating the efficacy of the dietary compounds against CSCs
will provide rationale for preclinical and clinical evaluation of these
compounds or potentially their native food extracts for chemopre-
vention of CSCs. These studies will eventually enable us to discover
more effective strategies for cancer treatment to reduce cancer
resistance and recurrence and to improve patient survival.
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